Paper 3, Section I, 7C7 \mathrm{C}

Methods
Part IB, 2015

(a) From the defining property of the δ\delta function,

δ(x)f(x)dx=f(0)\int_{-\infty}^{\infty} \delta(x) f(x) d x=f(0)

for any function ff, prove that

(i) δ(x)=δ(x)\delta(-x)=\delta(x)

(ii) δ(ax)=a1δ(x)\delta(a x)=|a|^{-1} \delta(x) for aR,a0a \in \mathbb{R}, a \neq 0,

(iii) If g:RR,xg(x)g: \mathbb{R} \rightarrow \mathbb{R}, x \mapsto g(x) is smooth and has isolated zeros xix_{i} where the derivative g(xi)0g^{\prime}\left(x_{i}\right) \neq 0, then

δ[g(x)]=iδ(xxi)g(xi)\delta[g(x)]=\sum_{i} \frac{\delta\left(x-x_{i}\right)}{\left|g^{\prime}\left(x_{i}\right)\right|}

(b) Show that the function γ(x)\gamma(x) defined by

γ(x)=lims0ex/ss(1+ex/s)2\gamma(x)=\lim _{s \rightarrow 0} \frac{e^{x / s}}{s\left(1+e^{x / s}\right)^{2}}

is the δ(x)\delta(x) function.