Paper 3, Section II, C

Methods
Part IB, 2015

(i) Consider the Poisson equation 2ψ(r)=f(r)\nabla^{2} \psi(\mathbf{r})=f(\mathbf{r}) with forcing term ff on the infinite domain R3\mathbb{R}^{3} with limrψ=0\lim _{|\mathbf{r}| \rightarrow \infty} \psi=0. Derive the Green's function G(r,r)=1/(4πrr)G\left(\mathbf{r}, \mathbf{r}^{\prime}\right)=-1 /\left(4 \pi\left|\mathbf{r}-\mathbf{r}^{\prime}\right|\right) for this equation using the divergence theorem. [You may assume without proof that the divergence theorem is valid for the Green's function.]

(ii) Consider the Helmholtz equation

2ψ(r)+k2ψ(r)=f(r)\nabla^{2} \psi(\mathbf{r})+k^{2} \psi(\mathbf{r})=f(\mathbf{r})

where kk is a real constant. A Green's function g(r,r)g\left(\mathbf{r}, \mathbf{r}^{\prime}\right) for this equation can be constructed from G(r,r)G\left(\mathbf{r}, \mathbf{r}^{\prime}\right) of (i) by assuming g(r,r)=U(r)G(r,r)g\left(\mathbf{r}, \mathbf{r}^{\prime}\right)=U(r) G\left(\mathbf{r}, \mathbf{r}^{\prime}\right) where r=rrr=\left|\mathbf{r}-\mathbf{r}^{\prime}\right| and U(r)U(r) is a regular function. Show that limr0U(r)=1\lim _{r \rightarrow 0} U(r)=1 and that UU satisfies the equation

d2Udr2+k2U(r)=0\frac{d^{2} U}{d r^{2}}+k^{2} U(r)=0

(iii) Take the Green's function with the specific solution U(r)=eikrU(r)=e^{i k r} to Eq. ( \ddagger ) and consider the Helmholtz equation ()(\dagger) on the semi-infinite domain z>0,x,yRz>0, x, y \in \mathbb{R}. Use the method of images to construct a Green's function for this problem that satisfies the boundary conditions

gz=0 on z=0 and limrg(r,r)=0\frac{\partial g}{\partial z^{\prime}}=0 \text { on } z^{\prime}=0 \quad \text { and } \quad \lim _{|\mathbf{r}| \rightarrow \infty} g\left(\mathbf{r}, \mathbf{r}^{\prime}\right)=0

(iv) A solution to the Helmholtz equation on a bounded domain can be constructed in complete analogy to that of the Poisson equation using the Green's function in Green's 3rd identity

ψ(r)=V[ψ(r)g(r,r)ng(r,r)ψ(r)n]dS+Vf(r)g(r,r)dV,\psi(\mathbf{r})=\int_{\partial V}\left[\psi\left(\mathbf{r}^{\prime}\right) \frac{\partial g\left(\mathbf{r}, \mathbf{r}^{\prime}\right)}{\partial n^{\prime}}-g\left(\mathbf{r}, \mathbf{r}^{\prime}\right) \frac{\partial \psi\left(\mathbf{r}^{\prime}\right)}{\partial n^{\prime}}\right] d S^{\prime}+\int_{V} f\left(\mathbf{r}^{\prime}\right) g\left(\mathbf{r}, \mathbf{r}^{\prime}\right) d V^{\prime},

where VV denotes the volume of the domain, V\partial V its boundary and /n\partial / \partial n^{\prime} the outgoing normal derivative on the boundary. Now consider the homogeneous Helmholtz equation 2ψ(r)+k2ψ(r)=0\nabla^{2} \psi(\mathbf{r})+k^{2} \psi(\mathbf{r})=0 on the domain z>0,x,yRz>0, x, y \in \mathbb{R} with boundary conditions ψ(r)=0\psi(\mathbf{r})=0 at r|\mathbf{r}| \rightarrow \infty and

ψzz=0={0 for ρ>aA for ρa\left.\frac{\partial \psi}{\partial z}\right|_{z=0}= \begin{cases}0 & \text { for } \rho>a \\ A & \text { for } \rho \leqslant a\end{cases}

where ρ=x2+y2\rho=\sqrt{x^{2}+y^{2}} and AA and aa are real constants. Construct a solution in integral form to this equation using cylindrical coordinates (z,ρ,φ)(z, \rho, \varphi) with x=ρcosφ,y=ρsinφx=\rho \cos \varphi, y=\rho \sin \varphi.