Paper 1, Section II, D

Quantum Mechanics
Part IB, 2015

Write down expressions for the probability density ρ(x,t)\rho(x, t) and the probability current j(x,t)j(x, t) for a particle in one dimension with wavefunction Ψ(x,t)\Psi(x, t). If Ψ(x,t)\Psi(x, t) obeys the timedependent Schrödinger equation with a real potential, show that

jx+ρt=0\frac{\partial j}{\partial x}+\frac{\partial \rho}{\partial t}=0

Consider a stationary state, Ψ(x,t)=ψ(x)eiEt/\Psi(x, t)=\psi(x) e^{-i E t / \hbar}, with

ψ(x){eik1x+Reik1xxTeik2xx+\psi(x) \sim \begin{cases}e^{i k_{1} x}+R e^{-i k_{1} x} & x \rightarrow-\infty \\ T e^{i k_{2} x} & x \rightarrow+\infty\end{cases}

where E,k1,k2E, k_{1}, k_{2} are real. Evaluate j(x,t)j(x, t) for this state in the regimes x+x \rightarrow+\infty and xx \rightarrow-\infty.

Consider a real potential,

V(x)=αδ(x)+U(x),U(x)={0x<0V0x>0V(x)=-\alpha \delta(x)+U(x), \quad U(x)= \begin{cases}0 & x<0 \\ V_{0} & x>0\end{cases}

where δ(x)\delta(x) is the Dirac delta function, V0>0V_{0}>0 and α>0\alpha>0. Assuming that ψ(x)\psi(x) is continuous at x=0x=0, derive an expression for

limϵ0[ψ(ϵ)ψ(ϵ)]\lim _{\epsilon \rightarrow 0}\left[\psi^{\prime}(\epsilon)-\psi^{\prime}(-\epsilon)\right]

Hence calculate the reflection and transmission probabilities for a particle incident from x=x=-\infty with energy E>V0.E>V_{0} .