Paper 4, Section II, A

Variational Principles
Part IB, 2015

Derive the Euler-Lagrange equation for the integral

x0x1f(x,u,u)dx\int_{x_{0}}^{x_{1}} f\left(x, u, u^{\prime}\right) d x

where u(x0)u\left(x_{0}\right) is allowed to float, f/ux0=0\partial f /\left.\partial u^{\prime}\right|_{x_{0}}=0 and u(x1)u\left(x_{1}\right) takes a given value.

Given that y(0)y(0) is finite, y(1)=1y(1)=1 and y(1)=1y^{\prime}(1)=1, find the stationary value of

J=01(x4(y)2+4x2(y)2)dxJ=\int_{0}^{1}\left(x^{4}\left(y^{\prime \prime}\right)^{2}+4 x^{2}\left(y^{\prime}\right)^{2}\right) d x