Paper 3, Section I, G

Analysis II
Part IB, 2016

(a) Let XX be a subset of R\mathbb{R}. What does it mean to say that a sequence of functions fn:XR(nN)f_{n}: X \rightarrow \mathbb{R}(n \in \mathbb{N}) is uniformly convergent?

(b) Which of the following sequences of functions are uniformly convergent? Justify your answers.

(i) fn:(0,1)R,fn(x)=1xn1xf_{n}:(0,1) \rightarrow \mathbb{R}, \quad f_{n}(x)=\frac{1-x^{n}}{1-x}

(ii) fn:(0,1)R,fn(x)=k=1n1k2xkf_{n}:(0,1) \rightarrow \mathbb{R}, \quad f_{n}(x)=\sum_{k=1}^{n} \frac{1}{k^{2}} x^{k}.

(iii) fn:RRf_{n}: \mathbb{R} \rightarrow \mathbb{R}, fn(x)=x/n\quad f_{n}(x)=x / n.

(iv) fn:[0,)R,fn(x)=xenxf_{n}:[0, \infty) \rightarrow \mathbb{R}, \quad f_{n}(x)=x e^{-n x}.