Paper 4, Section I, G

Analysis II
Part IB, 2016

(a) What does it mean to say that a mapping f:XXf: X \rightarrow X from a metric space to itself is a contraction?

(b) State carefully the contraction mapping theorem.

(c) Let (a1,a2,a3)R3\left(a_{1}, a_{2}, a_{3}\right) \in \mathbb{R}^{3}. By considering the metric space (R3,d)\left(\mathbb{R}^{3}, d\right) with

d(x,y)=i=13xiyid(x, y)=\sum_{i=1}^{3}\left|x_{i}-y_{i}\right|

or otherwise, show that there exists a unique solution (x1,x2,x3)R3\left(x_{1}, x_{2}, x_{3}\right) \in \mathbb{R}^{3} of the system of equations

x1=a1+16(sinx2+sinx3),x2=a2+16(sinx1+sinx3),x3=a3+16(sinx1+sinx2).\begin{aligned} &x_{1}=a_{1}+\frac{1}{6}\left(\sin x_{2}+\sin x_{3}\right), \\ &x_{2}=a_{2}+\frac{1}{6}\left(\sin x_{1}+\sin x_{3}\right), \\ &x_{3}=a_{3}+\frac{1}{6}\left(\sin x_{1}+\sin x_{2}\right) . \end{aligned}