Paper 3, Section I, A

Complex Methods
Part IB, 2016

The function f(x)f(x) has Fourier transform

f~(k)=f(x)eikxdx=2kip2+k2,\tilde{f}(k)=\int_{-\infty}^{\infty} f(x) e^{-i k x} d x=\frac{-2 k i}{p^{2}+k^{2}},

where p>0p>0 is a real constant. Using contour integration, calculate f(x)f(x) for x<0x<0. [Jordan's lemma and the residue theorem may be used without proof.]