Paper 4, Section I, D

Electromagnetism
Part IB, 2016

(a) Starting from Maxwell's equations, show that in a vacuum,

1c22Et22E=0 and E=0 where c=1ϵ0μ0.\frac{1}{c^{2}} \frac{\partial^{2} \mathbf{E}}{\partial t^{2}}-\nabla^{2} \mathbf{E}=\mathbf{0} \quad \text { and } \quad \boldsymbol{\nabla} \cdot \mathbf{E}=0 \quad \text { where } \quad c=\sqrt{\frac{1}{\epsilon_{0} \mu_{0}}} .

(b) Suppose that E=E02(1,1,0)cos(kzωt)\mathbf{E}=\frac{E_{0}}{\sqrt{2}}(1,1,0) \cos (k z-\omega t) where E0,kE_{0}, k and ω\omega are real constants.

(i) What are the wavevector and the polarisation? How is ω\omega related to kk ?

(ii) Find the magnetic field B\mathbf{B}.

(iii) Compute and interpret the time-averaged value of the Poynting vector, S=1μ0E×B\mathbf{S}=\frac{1}{\mu_{0}} \mathbf{E} \times \mathbf{B}.