Paper 2, Section II, D

Electromagnetism
Part IB, 2016

(a) State the covariant form of Maxwell's equations and define all the quantities that appear in these expressions.

(b) Show that EB\mathbf{E} \cdot \mathbf{B} is a Lorentz scalar (invariant under Lorentz transformations) and find another Lorentz scalar involving E\mathbf{E} and B\mathbf{B}.

(c) In some inertial frame SS the electric and magnetic fields are respectively E=(0,Ey,Ez)\mathbf{E}=\left(0, E_{y}, E_{z}\right) and B=(0,By,Bz)\mathbf{B}=\left(0, B_{y}, B_{z}\right). Find the electric and magnetic fields, E=(0,Ey,Ez)\mathbf{E}^{\prime}=\left(0, E_{y}^{\prime}, E_{z}^{\prime}\right) and B=(0,By,Bz)\mathbf{B}^{\prime}=\left(0, B_{y}^{\prime}, B_{z}^{\prime}\right), in another inertial frame SS^{\prime} that is related to SS by the Lorentz transformation,

Λνμ=(γγv/c00γv/cγ0000100001)\Lambda_{\nu}^{\mu}=\left(\begin{array}{cccc} \gamma & -\gamma v / c & 0 & 0 \\ -\gamma v / c & \gamma & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{array}\right)

where vv is the velocity of SS^{\prime} in SS and γ=(1v2/c2)1/2\gamma=\left(1-v^{2} / c^{2}\right)^{-1 / 2}.

(d) Suppose that E=E0(0,1,0)\mathbf{E}=E_{0}(0,1,0) and B=E0c(0,cosθ,sinθ)\mathbf{B}=\frac{E_{0}}{c}(0, \cos \theta, \sin \theta) where 0θπ/20 \leqslant \theta \leqslant \pi / 2, and E0E_{0} is a real constant. An observer is moving in SS with velocity vv parallel to the xx-axis. What must vv be for the electric and magnetic fields to appear to the observer to be parallel? Comment on the case θ=π/2\theta=\pi / 2.