Paper 4, Section II, C
(a) Show that for an incompressible fluid, , where is the flow vorticity,
(b) State the equation of motion for an inviscid flow of constant density in a rotating frame subject to gravity. Show that, on Earth, the local vertical component of the centrifugal force is small compared to gravity. Present a scaling argument to justify the linearisation of the Euler equations for sufficiently large rotation rates, and hence deduce the linearised version of the Euler equations in a rapidly rotating frame.
(c) Denoting the rotation rate of the frame as , show that the linearised Euler equations may be manipulated to obtain an equation for the velocity field in the form
(d) Assume that there exist solutions of the form . Show that where the angle is to be determined.