Paper 1, Section I, F

Geometry
Part IB, 2016

(a) Describe the Poincaré disc model DD for the hyperbolic plane by giving the appropriate Riemannian metric.

(b) Let aDa \in D be some point. Write down an isometry f:DDf: D \rightarrow D with f(a)=0f(a)=0.

(c) Using the Poincaré disc model, calculate the distance from 0 to re eiθe^{i \theta} with 0r<10 \leqslant r<1

(d) Using the Poincaré disc model, calculate the area of a disc centred at a point aDa \in D and of hyperbolic radius ρ>0\rho>0.