Paper 1, Section II, F

Linear Algebra
Part IB, 2016

Let Mn,nM_{n, n} denote the vector space over F=RF=\mathbb{R} or C\mathbb{C} of n×nn \times n matrices with entries in FF. Let Tr:Mn,nF\operatorname{Tr}: M_{n, n} \rightarrow F denote the trace functional, i.e., if A=(aij)1i,jnMn,nA=\left(a_{i j}\right)_{1 \leqslant i, j \leqslant n} \in M_{n, n}, then

Tr(A)=i=1naii\operatorname{Tr}(A)=\sum_{i=1}^{n} a_{i i}

(a) Show that Tr is a linear functional.

(b) Show that Tr(AB)=Tr(BA)\operatorname{Tr}(A B)=\operatorname{Tr}(B A) for A,BMn,nA, B \in M_{n, n}.

(c) Show that Tr\operatorname{Tr} is unique in the following sense: If f:Mn,nFf: M_{n, n} \rightarrow F is a linear functional such that f(AB)=f(BA)f(A B)=f(B A) for each A,BMn,nA, B \in M_{n, n}, then ff is a scalar multiple of the trace functional. If, in addition, f(I)=nf(I)=n, then f=f= Tr.

(d) Let WMn,nW \subseteq M_{n, n} be the subspace spanned by matrices CC of the form C=ABBAC=A B-B A for A,BMn,nA, B \in M_{n, n}. Show that WW is the kernel of Tr.