Paper 4, Section II, F
Part IB, 2016
(a) Let be a linear transformation between finite dimensional vector spaces over a field or .
Define the dual map of . Let be the dual map of . Given a subspace , define the annihilator of . Show that and the image of coincide. Conclude that the dimension of the image of is equal to the dimension of the image of . Show that .
(b) Now suppose in addition that are inner product spaces. Define the adjoint of . Let be linear transformations between finite dimensional inner product spaces. Suppose that the image of is equal to the kernel of . Then show that is an isomorphism.