Paper 3, Section II, F
Part IB, 2016
Let be a linear transformation defined on a finite dimensional inner product space over . Recall that is normal if and its adjoint commute. Show that being normal is equivalent to each of the following statements:
(i) where are self-adjoint operators and ;
(ii) there is an orthonormal basis for consisting of eigenvectors of ;
(iii) there is a polynomial with complex coefficients such that .