Paper 4, Section I, A

Methods
Part IB, 2016

Consider the function f(x)f(x) defined by

f(x)=x2, for π<x<πf(x)=x^{2}, \text { for }-\pi<x<\pi

Calculate the Fourier series representation for the 2π2 \pi-periodic extension of this function. Hence establish that

π26=n=11n2\frac{\pi^{2}}{6}=\sum_{n=1}^{\infty} \frac{1}{n^{2}}

and that

π212=n=1(1)n+1n2\frac{\pi^{2}}{12}=\sum_{n=1}^{\infty} \frac{(-1)^{n+1}}{n^{2}}