Paper 3, Section I\mathbf{I}, A

Methods
Part IB, 2016

Calculate the Green's function G(x;ξ)G(x ; \xi) given by the solution to

d2Gdx2=δ(xξ);G(0;ξ)=dGdx(1;ξ)=0\frac{d^{2} G}{d x^{2}}=\delta(x-\xi) ; \quad G(0 ; \xi)=\frac{d G}{d x}(1 ; \xi)=0

where ξ(0,1),x(0,1)\xi \in(0,1), x \in(0,1) and δ(x)\delta(x) is the Dirac δ\delta-function. Use this Green's function to calculate an explicit solution y(x)y(x) to the boundary value problem

d2ydx2=xex\frac{d^{2} y}{d x^{2}}=x e^{-x}

where x(0,1)x \in(0,1), and y(0)=y(1)=0y(0)=y^{\prime}(1)=0.