Paper 1, Section II, A
Part IB, 2016
(a) Consider the general self-adjoint problem for on :
where is the eigenvalue, and . Prove that eigenfunctions associated with distinct eigenvalues are orthogonal with respect to a particular inner product which you should define carefully.
(b) Consider the problem for given by
(i) Recast this problem into self-adjoint form.
(ii) Calculate the complete set of eigenfunctions and associated eigenvalues for this problem. [Hint: You may find it useful to make the substitution
(iii) Verify that the eigenfunctions associated with distinct eigenvalues are indeed orthogonal.