Paper 4, Section II, B

Methods
Part IB, 2016

Let D\mathcal{D} be a 2-dimensional region in R2\mathbb{R}^{2} with boundary D\partial \mathcal{D}. In this question you may assume Green's second identity:

D(f2gg2f)dA=D(fgngfn)dl\int_{\mathcal{D}}\left(f \nabla^{2} g-g \nabla^{2} f\right) d A=\int_{\partial \mathcal{D}}\left(f \frac{\partial g}{\partial n}-g \frac{\partial f}{\partial n}\right) d l

where n\frac{\partial}{\partial n} denotes the outward normal derivative on D\partial \mathcal{D}, and ff and gg are suitably regular functions that include the free space Green's function in two dimensions. You may also assume that the free space Green's function for the Laplace equation in two dimensions is given by

G0(r,r0)=12πlogrr0G_{0}\left(\boldsymbol{r}, \boldsymbol{r}_{0}\right)=\frac{1}{2 \pi} \log \left|\boldsymbol{r}-\boldsymbol{r}_{0}\right|

(a) State the conditions required on a function G(r,r0)G\left(\boldsymbol{r}, \boldsymbol{r}_{\mathbf{0}}\right) for it to be a Dirichlet Green's function for the Laplace operator on D\mathcal{D}. Suppose that 2ψ=0\nabla^{2} \psi=0 on D\mathcal{D}. Show that if GG is a Dirichlet Green's function for D\mathcal{D} then

ψ(r0)=Dψ(r)nG(r,r0)dl for r0D\psi\left(\boldsymbol{r}_{\mathbf{0}}\right)=\int_{\partial \mathcal{D}} \psi(\boldsymbol{r}) \frac{\partial}{\partial n} G\left(\boldsymbol{r}, \boldsymbol{r}_{\mathbf{0}}\right) d l \quad \text { for } \boldsymbol{r}_{\mathbf{0}} \in \mathcal{D}

(b) Consider the Laplace equation 2ϕ=0\nabla^{2} \phi=0 in the quarter space

D={(x,y):x0 and y0}\mathcal{D}=\{(x, y): x \geqslant 0 \text { and } y \geqslant 0\}

with boundary conditions

ϕ(x,0)=ex2,ϕ(0,y)=ey2 and ϕ(x,y)0 as x2+y2\phi(x, 0)=e^{-x^{2}}, \phi(0, y)=e^{-y^{2}} \text { and } \phi(x, y) \rightarrow 0 \text { as } \sqrt{x^{2}+y^{2}} \rightarrow \infty

Using the method of images, show that the solution is given by

ϕ(x0,y0)=F(x0,y0)+F(y0,x0),\phi\left(x_{0}, y_{0}\right)=F\left(x_{0}, y_{0}\right)+F\left(y_{0}, x_{0}\right),

where

F(x0,y0)=4x0y0π0tet2[(tx0)2+y02][(t+x0)2+y02]dtF\left(x_{0}, y_{0}\right)=\frac{4 x_{0} y_{0}}{\pi} \int_{0}^{\infty} \frac{t e^{-t^{2}}}{\left[\left(t-x_{0}\right)^{2}+y_{0}^{2}\right]\left[\left(t+x_{0}\right)^{2}+y_{0}^{2}\right]} d t