Paper 2, Section II, G

Analysis II
Part IB, 2016

(a) What is a norm on a real vector space?

(b) Let L(Rm,Rn)L\left(\mathbb{R}^{m}, \mathbb{R}^{n}\right) be the space of linear maps from Rm\mathbb{R}^{m} to Rn\mathbb{R}^{n}. Show that

A=sup0xRmAxx,AL(Rm,Rn),\|A\|=\sup _{0 \neq x \in \mathbb{R}^{m}} \frac{\|A x\|}{\|x\|}, \quad A \in L\left(\mathbb{R}^{m}, \mathbb{R}^{n}\right),

defines a norm on L(Rm,Rn)L\left(\mathbb{R}^{m}, \mathbb{R}^{n}\right), and that if BL(R,Rm)B \in L\left(\mathbb{R}^{\ell}, \mathbb{R}^{m}\right) then ABAB\|A B\| \leqslant\|A\|\|B\|.

(c) Let MnM_{n} be the space of n×nn \times n real matrices, identified with L(Rn,Rn)L\left(\mathbb{R}^{n}, \mathbb{R}^{n}\right) in the usual way. Let UMnU \subset M_{n} be the subset

U={XMnIX is invertible }U=\left\{X \in M_{n} \mid I-X \text { is invertible }\right\}

Show that UU is an open subset of MnM_{n} which contains the set V={XMnX<1}V=\left\{X \in M_{n} \mid\|X\|<1\right\}.

(d) Let f:UMnf: U \rightarrow M_{n} be the map f(X)=(IX)1f(X)=(I-X)^{-1}. Show carefully that the series k=0Xk\sum_{k=0}^{\infty} X^{k} converges on VV to f(X)f(X). Hence or otherwise, show that ff is twice differentiable at 0 , and compute its first and second derivatives there.