Paper 1, Section II, D

Numerical Analysis
Part IB, 2016

(a) Consider a method for numerically solving an ordinary differential equation (ODE) for an initial value problem, y=f(t,y)\mathbf{y}^{\prime}=\mathbf{f}(t, \mathbf{y}). What does it mean for a method to converge over t[0,T]t \in[0, T] where TRT \in \mathbb{R} ? What is the definition of the order of a method?

(b) A general multistep method for the numerical solution of an ODE is

l=0sρlyn+l=hl=0sσlf(tn+l,yn+l),n=0,1,\sum_{l=0}^{s} \rho_{l} \mathbf{y}_{n+l}=h \sum_{l=0}^{s} \sigma_{l} \mathbf{f}\left(t_{n+l}, \mathbf{y}_{n+l}\right), \quad n=0,1, \ldots

where ss is a fixed positive integer. Show that this method is at least of order p1p \geqslant 1 if and only if

l=0sρl=0 and l=0slkρl=kl=0slk1σl,k=1,,p\sum_{l=0}^{s} \rho_{l}=0 \quad \text { and } \quad \sum_{l=0}^{s} l^{k} \rho_{l}=k \sum_{l=0}^{s} l^{k-1} \sigma_{l}, \quad k=1, \ldots, p

(c) State the Dahlquist equivalence theorem regarding the convergence of a multistep method.

(d) Consider the multistep method,

yn+2+θyn+1+ayn=h[σ0f(tn,yn)+σ1f(tn+1,yn+1)+σ2f(tn+2,yn+2)]\mathbf{y}_{n+2}+\theta \mathbf{y}_{n+1}+a \mathbf{y}_{n}=h\left[\sigma_{0} \mathbf{f}\left(t_{n}, \mathbf{y}_{n}\right)+\sigma_{1} \mathbf{f}\left(t_{n+1}, \mathbf{y}_{n+1}\right)+\sigma_{2} \mathbf{f}\left(t_{n+2}, \mathbf{y}_{n+2}\right)\right]

Determine the values of σi\sigma_{i} and aa (in terms of the real parameter θ\theta ) such that the method is at least third order. For what values of θ\theta does the method converge?