Paper 2, Section II, B

Quantum Mechanics
Part IB, 2016

The one dimensional quantum harmonic oscillator has Hamiltonian

H^=12mp^2+12mω2x^2,\hat{H}=\frac{1}{2 m} \hat{p}^{2}+\frac{1}{2} m \omega^{2} \hat{x}^{2},

where mm and ω\omega are real positive constants and x^\hat{x} and p^\hat{p} are the standard position and momentum operators satisfying the commutation relation [x^,p^]=i[\hat{x}, \hat{p}]=i \hbar. Consider the operators

A^=p^imωx^ and B^=p^+imωx^.\hat{A}=\hat{p}-i m \omega \hat{x} \quad \text { and } \quad \hat{B}=\hat{p}+i m \omega \hat{x} .

(a) Show that

B^A^=2m(H^12ω) and A^B^=2m(H^+12ω).\hat{B} \hat{A}=2 m\left(\hat{H}-\frac{1}{2} \hbar \omega\right) \quad \text { and } \quad \hat{A} \hat{B}=2 m\left(\hat{H}+\frac{1}{2} \hbar \omega\right) .

(b) Suppose that ϕ\phi is an eigenfunction of H^\hat{H} with eigenvalue EE. Show that A^ϕ\hat{A} \phi is then also an eigenfunction of H^\hat{H} and that its corresponding eigenvalue is EωE-\hbar \omega.

(c) Show that for any normalisable wavefunctions χ\chi and ψ\psi,

χ(A^ψ)dx=(B^χ)ψdx\int_{-\infty}^{\infty} \chi^{*}(\hat{A} \psi) d x=\int_{-\infty}^{\infty}(\hat{B} \chi)^{*} \psi d x

[You may assume that the operators x^\hat{x} and p^\hat{p} are Hermitian.]

(d) With ϕ\phi as in (b), obtain an expression for the norm of A^ϕ\hat{A} \phi in terms of EE and the norm of ϕ\phi. [The squared norm of any wavefunction ψ\psi is ψ2dx\int_{-\infty}^{\infty}|\psi|^{2} d x.]

(e) Show that all eigenvalues of H^\hat{H} are non-negative.

(f) Using the above results, deduce that each eigenvalue EE of H^\hat{H} must be of the form E=(n+12)ωE=\left(n+\frac{1}{2}\right) \hbar \omega for some non-negative integer nn.