Paper 1, Section I, C

Variational Principles
Part IB, 2016

(a) Consider the function f(x1,x2)=2x12+x22+αx1x2f\left(x_{1}, x_{2}\right)=2 x_{1}^{2}+x_{2}^{2}+\alpha x_{1} x_{2}, where α\alpha is a real constant. For what values of α\alpha is the function ff convex?

(b) In the case α=3\alpha=-3, calculate the extremum of x12x_{1}^{2} on the set of points where f(x1,x2)+1=0.f\left(x_{1}, x_{2}\right)+1=0 .