Paper 4, Section II, A

Complex Methods
Part IB, 2017

By using Fourier transforms and a conformal mapping

w=sin(πza)w=\sin \left(\frac{\pi z}{a}\right)

with z=x+iyz=x+i y and w=ξ+iηw=\xi+i \eta, and a suitable real constant aa, show that the solution to

2ϕ=02πx2π,y0ϕ(x,0)=f(x)2πx2πϕ(±2π,y)=0y>0,ϕ(x,y)0y,2πx2π\begin{array}{rlrl} \nabla^{2} \phi & =0 & -2 \pi \leqslant x \leqslant 2 \pi, y \geqslant 0 \\ \phi(x, 0) & =f(x) & -2 \pi \leqslant x \leqslant 2 \pi \\ \phi(\pm 2 \pi, y) & =0 & y>0, \\ \phi(x, y) & \rightarrow 0 & y \rightarrow \infty,-2 \pi \leqslant x \leqslant 2 \pi \end{array}

is given by

ϕ(ξ,η)=ηπ11F(ξ)η2+(ξξ)2dξ\phi(\xi, \eta)=\frac{\eta}{\pi} \int_{-1}^{1} \frac{F\left(\xi^{\prime}\right)}{\eta^{2}+\left(\xi-\xi^{\prime}\right)^{2}} d \xi^{\prime}

where F(ξ)F\left(\xi^{\prime}\right) is to be determined.

In the case of f(x)=sin(x4)f(x)=\sin \left(\frac{x}{4}\right), give F(ξ)F\left(\xi^{\prime}\right) explicitly as a function of ξ\xi^{\prime}. [You need not evaluate the integral.]