Paper 4, Section I, G

Analysis II
Part IB, 2017

State the chain rule for the composition of two differentiable functions f:RmRnf: \mathbb{R}^{m} \rightarrow \mathbb{R}^{n} and g:RnRpg: \mathbb{R}^{n} \rightarrow \mathbb{R}^{p}.

Let f:R2Rf: \mathbb{R}^{2} \rightarrow \mathbb{R} be differentiable. For cRc \in \mathbb{R}, let g(x)=f(x,cx)g(x)=f(x, c-x). Compute the derivative of gg. Show that if f/x=f/y\partial f / \partial x=\partial f / \partial y throughout R2\mathbb{R}^{2}, then f(x,y)=h(x+y)f(x, y)=h(x+y) for some function h:RRh: \mathbb{R} \rightarrow \mathbb{R}.