Paper 1, Section II, H
Part IB, 2017
A rich and generous man possesses pounds. Some poor cousins arrive at his mansion. Being generous he decides to give them money. On day 1 , he chooses uniformly at random an integer between and 1 inclusive and gives it to the first cousin. Then he is left with pounds. On day 2 , he chooses uniformly at random an integer between and 1 inclusive and gives it to the second cousin and so on. If then he does not give the next cousin any money. His choices of the uniform numbers are independent. Let be his fortune at the end of day .
Show that is a Markov chain and find its transition probabilities.
Let be the first time he has 1 pound left, i.e. . Show that