Paper 2, Section I, B

Methods
Part IB, 2017

Expand f(x)=xf(x)=x as a Fourier series on π<x<π-\pi<x<\pi.

By integrating the series show that x2x^{2} on π<x<π-\pi<x<\pi can be written as

x2=a02+n=1ancosnxx^{2}=\frac{a_{0}}{2}+\sum_{n=1}^{\infty} a_{n} \cos n x

where an,n=1,2,a_{n}, n=1,2, \ldots, should be determined and

a0=8n=1(1)n1n2.a_{0}=8 \sum_{n=1}^{\infty} \frac{(-1)^{n-1}}{n^{2}} .

By evaluating a0a_{0} another way show that

n=1(1)n1n2=π212\sum_{n=1}^{\infty} \frac{(-1)^{n-1}}{n^{2}}=\frac{\pi^{2}}{12}