Paper 4, Section I, A

Methods
Part IB, 2017

The Legendre polynomials, Pn(x)P_{n}(x) for integers n0n \geqslant 0, satisfy the Sturm-Liouville equation

ddx[(1x2)ddxPn(x)]+n(n+1)Pn(x)=0\frac{d}{d x}\left[\left(1-x^{2}\right) \frac{d}{d x} P_{n}(x)\right]+n(n+1) P_{n}(x)=0

and the recursion formula

(n+1)Pn+1(x)=(2n+1)xPn(x)nPn1(x),P0(x)=1,P1(x)=x(n+1) P_{n+1}(x)=(2 n+1) x P_{n}(x)-n P_{n-1}(x), \quad P_{0}(x)=1, \quad P_{1}(x)=x

(i) For all n0n \geqslant 0, show that Pn(x)P_{n}(x) is a polynomial of degree nn with Pn(1)=1P_{n}(1)=1.

(ii) For all m,n0m, n \geqslant 0, show that Pn(x)P_{n}(x) and Pm(x)P_{m}(x) are orthogonal over the range x[1,1]x \in[-1,1] when mnm \neq n.

(iii) For each n0n \geqslant 0 let

Rn(x)=dndxn[(x21)n]R_{n}(x)=\frac{d^{n}}{d x^{n}}\left[\left(x^{2}-1\right)^{n}\right]

Assume that for each nn there is a constant αn\alpha_{n} such that Pn(x)=αnRn(x)P_{n}(x)=\alpha_{n} R_{n}(x) for all xx. Determine αn\alpha_{n} for each nn.