Paper 3, Section I, AMethodsPart IB, 2017Using the substitution u(x,y)=v(x,y)e−x2u(x, y)=v(x, y) e^{-x^{2}}u(x,y)=v(x,y)e−x2, find u(x,y)u(x, y)u(x,y) that satisfiesux+xuy+2xu=e−x2u_{x}+x u_{y}+2 x u=e^{-x^{2}}ux+xuy+2xu=e−x2with boundary data u(0,y)=ye−y2u(0, y)=y e^{-y^{2}}u(0,y)=ye−y2.