Paper 1, Section II, 14B

Methods
Part IB, 2017

(a)

(i) Compute the Fourier transform h~(k)\tilde{h}(k) of h(x)=eaxh(x)=e^{-a|x|}, where aa is a real positive constant.

(ii) Consider the boundary value problem

d2udx2+ω2u=ex on <x<-\frac{d^{2} u}{d x^{2}}+\omega^{2} u=e^{-|x|} \quad \text { on }-\infty<x<\infty

with real constant ω±1\omega \neq \pm 1 and boundary condition u(x)0u(x) \rightarrow 0 as x|x| \rightarrow \infty.

Find the Fourier transform u~(k)\tilde{u}(k) of u(x)u(x) and hence solve the boundary value problem. You should clearly state any properties of the Fourier transform that you use.

(b) Consider the wave equation

vtt=vxx on <x< and t>0v_{t t}=v_{x x} \quad \text { on } \quad-\infty<x<\infty \text { and } t>0

with initial conditions

v(x,0)=f(x)vt(x,0)=g(x).v(x, 0)=f(x) \quad v_{t}(x, 0)=g(x) .

Show that the Fourier transform v~(k,t)\tilde{v}(k, t) of the solution v(x,t)v(x, t) with respect to the variable xx is given by

v~(k,t)=f~(k)coskt+g~(k)ksinkt\tilde{v}(k, t)=\tilde{f}(k) \cos k t+\frac{\tilde{g}(k)}{k} \sin k t

where f~(k)\tilde{f}(k) and g~(k)\tilde{g}(k) are the Fourier transforms of the initial conditions. Starting from v~(k,t)\tilde{v}(k, t) derive d'Alembert's solution for the wave equation:

v(x,t)=12(f(xt)+f(x+t))+12xtx+tg(ξ)dξv(x, t)=\frac{1}{2}(f(x-t)+f(x+t))+\frac{1}{2} \int_{x-t}^{x+t} g(\xi) d \xi

You should state clearly any properties of the Fourier transform that you use.