Paper 2, Section II, A

Methods
Part IB, 2017

Laplace's equation for ϕ\phi in cylindrical coordinates (r,θ,z)(r, \theta, z), is

1rr(rϕr)+1r22ϕθ2+2ϕz2=0\frac{1}{r} \frac{\partial}{\partial r}\left(r \frac{\partial \phi}{\partial r}\right)+\frac{1}{r^{2}} \frac{\partial^{2} \phi}{\partial \theta^{2}}+\frac{\partial^{2} \phi}{\partial z^{2}}=0

Use separation of variables to find an expression for the general solution to Laplace's equation in cylindrical coordinates that is 2π2 \pi-periodic in θ\theta.

Find the bounded solution ϕ(r,θ,z)\phi(r, \theta, z) that satisfies

2ϕ=0z0,0r1ϕ(1,θ,z)=e4z(cosθ+sin2θ)+2ezsin2θ\begin{aligned} \nabla^{2} \phi &=0 \quad z \geqslant 0, \quad 0 \leqslant r \leqslant 1 \\ \phi(1, \theta, z) &=e^{-4 z}(\cos \theta+\sin 2 \theta)+2 e^{-z} \sin 2 \theta \end{aligned}