Paper 1, Section I, C

Numerical Analysis
Part IB, 2017

Given n+1n+1 real points x0<x1<<xnx_{0}<x_{1}<\cdots<x_{n}, define the Lagrange cardinal polynomials i(x),i=0,1,,n\ell_{i}(x), i=0,1, \ldots, n. Let p(x)p(x) be the polynomial of degree nn that interpolates the function fCn[x0,xn]f \in C^{n}\left[x_{0}, x_{n}\right] at these points. Express p(x)p(x) in terms of the values fi=f(xi)f_{i}=f\left(x_{i}\right), i=0,1,,ni=0,1, \ldots, n and the Lagrange cardinal polynomials.

Define the divided difference f[x0,x1,,xn]f\left[x_{0}, x_{1}, \ldots, x_{n}\right] and give an expression for it in terms of f0,f1,,fnf_{0}, f_{1}, \ldots, f_{n} and x0,x1,,xnx_{0}, x_{1}, \ldots, x_{n}. Prove that

f[x0,x1,,xn]=1n!f(n)(ξ)f\left[x_{0}, x_{1}, \ldots, x_{n}\right]=\frac{1}{n !} f^{(n)}(\xi)

for some number ξ[x0,xn]\xi \in\left[x_{0}, x_{n}\right].