Given n+1 real points x0<x1<⋯<xn, define the Lagrange cardinal polynomials ℓi(x),i=0,1,…,n. Let p(x) be the polynomial of degree n that interpolates the function f∈Cn[x0,xn] at these points. Express p(x) in terms of the values fi=f(xi), i=0,1,…,n and the Lagrange cardinal polynomials.
Define the divided difference f[x0,x1,…,xn] and give an expression for it in terms of f0,f1,…,fn and x0,x1,…,xn. Prove that
f[x0,x1,…,xn]=n!1f(n)(ξ)
for some number ξ∈[x0,xn].