Paper 1, Section I, H

Optimization
Part IB, 2017

Solve the following linear programming problem using the simplex method:

max(x1+2x2+x3) subject to x1,x2,x30x1+x2+2x3102x1+x2+3x315\begin{array}{r} \max \left(x_{1}+2 x_{2}+x_{3}\right) \\ \text { subject to } \quad x_{1}, x_{2}, x_{3} \geqslant 0 \\ x_{1}+x_{2}+2 x_{3} \leqslant 10 \\ 2 x_{1}+x_{2}+3 x_{3} \leqslant 15 \end{array}

Suppose we now subtract Δ[0,10]\Delta \in[0,10] from the right hand side of the last two constraints. Find the new optimal value.