Paper 2, Section I, F

Analysis II
Part IB, 2018

Show that f1=01f(x)dx\|f\|_{1}=\int_{0}^{1}|f(x)| d x defines a norm on the space C([0,1])C([0,1]) of continuous functions f:[0,1]Rf:[0,1] \rightarrow \mathbb{R}.

Let S\mathcal{S} be the set of continuous functions g:[0,1]Rg:[0,1] \rightarrow \mathbb{R} with g(0)=g(1)=0g(0)=g(1)=0. Show that for each continuous function f:[0,1]Rf:[0,1] \rightarrow \mathbb{R}, there is a sequence gnSg_{n} \in \mathcal{S} with supx[0,1]gn(x)supx[0,1]f(x)\sup _{x \in[0,1]}\left|g_{n}(x)\right| \leqslant \sup _{x \in[0,1]}|f(x)| such that fgn10\left\|f-g_{n}\right\|_{1} \rightarrow 0 as nn \rightarrow \infty

Show that if f:[0,1]Rf:[0,1] \rightarrow \mathbb{R} is continuous and 01f(x)g(x)dx=0\int_{0}^{1} f(x) g(x) d x=0 for every gSg \in \mathcal{S} then f=0f=0.