Paper 4, Section II, A

Complex Methods
Part IB, 2018

(a) Find the Laplace transform of

y(t)=ea2/4tπty(t)=\frac{e^{-a^{2} / 4 t}}{\sqrt{\pi t}}

for aR,a0a \in \mathbb{R}, a \neq 0.

[You may use without proof that

0exp(c2x2c2x2)dx=π2ce2c2.]\left.\int_{0}^{\infty} \exp \left(-c^{2} x^{2}-\frac{c^{2}}{x^{2}}\right) d x=\frac{\sqrt{\pi}}{2|c|} e^{-2 c^{2}} .\right]

(b) By using the Laplace transform, show that the solution to

2ux2=ut<x<,t>0u(x,0)=f(x)u(x,t) bounded, \begin{aligned} \frac{\partial^{2} u}{\partial x^{2}} &=\frac{\partial u}{\partial t} \quad-\infty<x<\infty, \quad t>0 \\ u(x, 0) &=f(x) \\ u(x, t) \quad \text { bounded, } \end{aligned}

can be written as

u(x,t)=K(xξ,t)f(ξ)dξu(x, t)=\int_{-\infty}^{\infty} K(|x-\xi|, t) f(\xi) d \xi

for some K(xξ,t)K(|x-\xi|, t) to be determined.

[You may use without proof that a particular solution to

y(x)sy(x)+f(x)=0y^{\prime \prime}(x)-s y(x)+f(x)=0

is given by

y(x)=esx2s0xesξf(ξ)dξesx2s0xesξf(ξ)dξ.]\left.y(x)=\frac{e^{-\sqrt{s} x}}{2 \sqrt{s}} \int_{0}^{x} e^{\sqrt{s} \xi} f(\xi) d \xi-\frac{e^{\sqrt{s} x}}{2 \sqrt{s}} \int_{0}^{x} e^{-\sqrt{s} \xi} f(\xi) d \xi .\right]