Paper 3, Section II, G
Part IB, 2018
Let be an open subset of the plane , and let be a smooth parametrization of a surface . A coordinate curve is an arc either of the form
for some constant and , or of the form
for some constant and . A coordinate rectangle is a rectangle in whose sides are coordinate curves.
Prove that all coordinate rectangles in have opposite sides of the same length if and only if at all points of , where and are the usual components of the first fundamental form, and are coordinates in .