Paper 4, Section II, GGeometryPart IB, 2018A Möbius strip in R3\mathbb{R}^{3}R3 is parametrized byσ(u,v)=(Q(u,v)sinu,Q(u,v)cosu,vcos(u/2))\sigma(u, v)=(Q(u, v) \sin u, Q(u, v) \cos u, v \cos (u / 2))σ(u,v)=(Q(u,v)sinu,Q(u,v)cosu,vcos(u/2))for (u,v)∈U=(0,2π)×R(u, v) \in U=(0,2 \pi) \times \mathbb{R}(u,v)∈U=(0,2π)×R, where Q≡Q(u,v)=2−vsin(u/2)Q \equiv Q(u, v)=2-v \sin (u / 2)Q≡Q(u,v)=2−vsin(u/2). Show that the Gaussian curvature isK=−1(v2/4+Q2)2K=\frac{-1}{\left(v^{2} / 4+Q^{2}\right)^{2}}K=(v2/4+Q2)2−1at (u,v)∈U(u, v) \in U(u,v)∈U