Paper 1, Section II, E

Linear Algebra
Part IB, 2018

Define a Jordan block Jm(λ)J_{m}(\lambda). What does it mean for a complex n×nn \times n matrix to be in Jordan normal form?

If AA is a matrix in Jordan normal form for an endomorphism α:VV\alpha: V \rightarrow V, prove that

dimKer((αλI)r)dimKer((αλI)r1)\operatorname{dim} \operatorname{Ker}\left((\alpha-\lambda I)^{r}\right)-\operatorname{dim} \operatorname{Ker}\left((\alpha-\lambda I)^{r-1}\right)

is the number of Jordan blocks Jm(λ)J_{m}(\lambda) of AA with mrm \geqslant r.

Find a matrix in Jordan normal form for Jm(λ)2J_{m}(\lambda)^{2}. [Consider all possible values of λ\lambda.]

Find a matrix in Jordan normal form for the complex matrix

[000a100a200a300a4000]\left[\begin{array}{cccc} 0 & 0 & 0 & a_{1} \\ 0 & 0 & a_{2} & 0 \\ 0 & a_{3} & 0 & 0 \\ a_{4} & 0 & 0 & 0 \end{array}\right]

assuming it is invertible.