Paper 2, Section II, E

Linear Algebra
Part IB, 2018

If XX is an n×mn \times m matrix over a field, show that there are invertible matrices PP and QQ such that

Q1XP=[Ir000]Q^{-1} X P=\left[\begin{array}{cc} I_{r} & 0 \\ 0 & 0 \end{array}\right]

for some 0rmin(m,n)0 \leqslant r \leqslant \min (m, n), where IrI_{r} is the identity matrix of dimension rr.

For a square matrix of the form A=[BD0C]A=\left[\begin{array}{cc}B & D \\ 0 & C\end{array}\right] with BB and CC square matrices, prove that det(A)=det(B)det(C)\operatorname{det}(A)=\operatorname{det}(B) \operatorname{det}(C).

If AMn×n(C)A \in M_{n \times n}(\mathbb{C}) and BMm×m(C)B \in M_{m \times m}(\mathbb{C}) have no common eigenvalue, show that the linear map

L:Mn×m(C)Mn×m(C)XAXXB\begin{aligned} L: M_{n \times m}(\mathbb{C}) & \longrightarrow M_{n \times m}(\mathbb{C}) \\ X & \longmapsto A X-X B \end{aligned}

is injective.