Paper 4, Section I, AMethodsPart IB, 2018By using separation of variables, solve Laplace's equation∂2u∂x2+∂2u∂y2=00<x<1,0<y<1\frac{\partial^{2} u}{\partial x^{2}}+\frac{\partial^{2} u}{\partial y^{2}}=0 \quad 0<x<1, \quad 0<y<1∂x2∂2u+∂y2∂2u=00<x<1,0<y<1subject tou(0,y)=00⩽y⩽1u(1,y)=00⩽y⩽1u(x,0)=00⩽x⩽1u(x,1)=2sin(3πx)0⩽x⩽1\begin{array}{ll} u(0, y)=0 & 0 \leqslant y \leqslant 1 \\ u(1, y)=0 & 0 \leqslant y \leqslant 1 \\ u(x, 0)=0 & 0 \leqslant x \leqslant 1 \\ u(x, 1)=2 \sin (3 \pi x) & 0 \leqslant x \leqslant 1 \end{array}u(0,y)=0u(1,y)=0u(x,0)=0u(x,1)=2sin(3πx)0⩽y⩽10⩽y⩽10⩽x⩽10⩽x⩽1