Paper 4, Section I, A

Methods
Part IB, 2018

By using separation of variables, solve Laplace's equation

2ux2+2uy2=00<x<1,0<y<1\frac{\partial^{2} u}{\partial x^{2}}+\frac{\partial^{2} u}{\partial y^{2}}=0 \quad 0<x<1, \quad 0<y<1

subject to

u(0,y)=00y1u(1,y)=00y1u(x,0)=00x1u(x,1)=2sin(3πx)0x1\begin{array}{ll} u(0, y)=0 & 0 \leqslant y \leqslant 1 \\ u(1, y)=0 & 0 \leqslant y \leqslant 1 \\ u(x, 0)=0 & 0 \leqslant x \leqslant 1 \\ u(x, 1)=2 \sin (3 \pi x) & 0 \leqslant x \leqslant 1 \end{array}