Paper 1, Section II, 14C

Methods
Part IB, 2018

Define the convolution fgf * g of two functions ff and gg. Defining the Fourier transform f~\tilde{f} of ff by

f~(k)=eikxf(x)dx\tilde{f}(k)=\int_{-\infty}^{\infty} \mathrm{e}^{-\mathrm{i} k x} f(x) \mathrm{d} x

show that

fg^(k)=f~(k)g~(k).\widehat{f * g}(k)=\tilde{f}(k) \tilde{g}(k) .

Given that the Fourier transform of f(x)=1/xf(x)=1 / x is

f~(k)=iπsgn(k),\tilde{f}(k)=-\mathrm{i} \pi \operatorname{sgn}(k),

find the Fourier transform of sin(x)/x2\sin (x) / x^{2}.