Paper 3, Section II, A

Methods
Part IB, 2018

Consider the Dirac delta function, δ(x)\delta(x), defined by the sampling property

f(x)δ(xx0)dx=f(x0)\int_{-\infty}^{\infty} f(x) \delta\left(x-x_{0}\right) d x=f\left(x_{0}\right)

for any suitable function f(x)f(x) and real constant x0x_{0}.

(a) Show that δ(αx)=α1δ(x)\delta(\alpha x)=|\alpha|^{-1} \delta(x) for any non-zero αR\alpha \in \mathbb{R}.

(b) Show that xδ(x)=δ(x)x \delta^{\prime}(x)=-\delta(x), where { }^{\prime} denotes differentiation with respect to xx.

(c) Calculate

f(x)δ(m)(x)dx\int_{-\infty}^{\infty} f(x) \delta^{(m)}(x) d x

where δ(m)(x)\delta^{(m)}(x) is the mth m^{\text {th }}derivative of the delta function.

(d) For

γn(x)=1πn(nx)2+1\gamma_{n}(x)=\frac{1}{\pi} \frac{n}{(n x)^{2}+1}

show that limnγn(x)=δ(x)\lim _{n \rightarrow \infty} \gamma_{n}(x)=\delta(x).

(e) Find expressions in terms of the delta function and its derivatives for

(i)

limnn3xex2n2\lim _{n \rightarrow \infty} n^{3} x e^{-x^{2} n^{2}}

(ii)

limn1π0ncos(kx)dk.\lim _{n \rightarrow \infty} \frac{1}{\pi} \int_{0}^{n} \cos (k x) d k .

(f) Hence deduce that

limn12πnneikxdk=δ(x)\lim _{n \rightarrow \infty} \frac{1}{2 \pi} \int_{-n}^{n} e^{i k x} d k=\delta(x)

[You may assume that

ey2dy=π and sinyydy=π.]\left.\int_{-\infty}^{\infty} e^{-y^{2}} d y=\sqrt{\pi} \quad \text { and } \quad \int_{-\infty}^{\infty} \frac{\sin y}{y} d y=\pi .\right]