Paper 2, Section II, A

Methods
Part IB, 2018

(a) Let f(x)f(x) be a 2π2 \pi-periodic function (i.e. f(x)=f(x+2π)f(x)=f(x+2 \pi) for all xx ) defined on [π,π][-\pi, \pi] by

f(x)={xx[0,π]xx[π,0]f(x)=\left\{\begin{array}{cl} x & x \in[0, \pi] \\ -x & x \in[-\pi, 0] \end{array}\right.

Find the Fourier series of f(x)f(x) in the form

f(x)=12a0+n=1ancos(nx)+n=1bnsin(nx)f(x)=\frac{1}{2} a_{0}+\sum_{n=1}^{\infty} a_{n} \cos (n x)+\sum_{n=1}^{\infty} b_{n} \sin (n x)

(b) Find the general solution to

y+2y+y=f(x)y^{\prime \prime}+2 y^{\prime}+y=f(x)

where f(x)f(x) is as given in part (a) and y(x)y(x) is 2π2 \pi-periodic.