Paper 4 , Section I, D

Numerical Analysis
Part IB, 2018

A=[121225561513142614λ],b=[137μ]A=\left[\begin{array}{cccc} 1 & 2 & 1 & 2 \\ 2 & 5 & 5 & 6 \\ 1 & 5 & 13 & 14 \\ 2 & 6 & 14 & \lambda \end{array}\right], \quad b=\left[\begin{array}{l} 1 \\ 3 \\ 7 \\ \mu \end{array}\right]

where λ\lambda and μ\mu are real parameters. Find the LUL U factorisation of the matrix AA. For what values of λ\lambda does the equation Ax=bA x=b have a unique solution for xx ?

For λ=20\lambda=20, use the LUL U decomposition with forward and backward substitution to determine a value for μ\mu for which a solution to Ax=bA x=b exists. Find the most general solution to the equation in this case.