Paper 3, Section II, B

Quantum Mechanics
Part IB, 2018

What is the physical significance of the expectation value

Q=ψ(x)Qψ(x)dx\langle Q\rangle=\int \psi^{*}(x) Q \psi(x) d x

of an observable QQ in the normalised state ψ(x)\psi(x) ? Let PP and QQ be two observables. By considering the norm of (Q+iλP)ψ(Q+i \lambda P) \psi for real values of λ\lambda, show that

Q2P214[Q,P]2.\left\langle Q^{2}\right\rangle\left\langle P^{2}\right\rangle \geqslant \frac{1}{4}|\langle[Q, P]\rangle|^{2} .

Deduce the generalised uncertainty relation

ΔQΔP12[Q,P],\Delta Q \Delta P \geqslant \frac{1}{2}|\langle[Q, P]\rangle|,

where the uncertainty ΔQ\Delta Q in the state ψ(x)\psi(x) is defined by

(ΔQ)2=(QQ)2(\Delta Q)^{2}=\left\langle(Q-\langle Q\rangle)^{2}\right\rangle

A particle of mass mm moves in one dimension under the influence of the potential 12mω2x2\frac{1}{2} m \omega^{2} x^{2}. By considering the commutator [x,p][x, p], show that every energy eigenvalue EE satisfies

E12ωE \geqslant \frac{1}{2} \hbar \omega