Paper 2, Section II, B

Variational Principles
Part IB, 2018

Derive the Euler-Lagrange equation for the integral

I[y]=x0x1f(y,y,y,x)dxI[y]=\int_{x_{0}}^{x_{1}} f\left(y, y^{\prime}, y^{\prime \prime}, x\right) d x

when y(x)y(x) and y(x)y^{\prime}(x) take given values at the fixed endpoints.

Show that the only function y(x)y(x) with y(0)=1,y(0)=2y(0)=1, y^{\prime}(0)=2 and y(x)0y(x) \rightarrow 0 as xx \rightarrow \infty for which the integral

I[y]=0(y2+(y)2+(y+y)2)dxI[y]=\int_{0}^{\infty}\left(y^{2}+\left(y^{\prime}\right)^{2}+\left(y^{\prime}+y^{\prime \prime}\right)^{2}\right) d x

is stationary is (3x+1)ex(3 x+1) e^{-x}.