Paper 3, Section I, D

Complex Methods
Part IB, 2019

By considering the transformation w=i(1z)/(1+z)w=i(1-z) /(1+z), find a solution to Laplace's equation 2ϕ=0\nabla^{2} \phi=0 inside the unit disc DCD \subset \mathbb{C}, subject to the boundary conditions

ϕz=1={ϕ0 for arg(z)(0,π)ϕ0 for arg(z)(π,2π)\left.\phi\right|_{|z|=1}= \begin{cases}\phi_{0} & \text { for } \arg (z) \in(0, \pi) \\ -\phi_{0} & \text { for } \arg (z) \in(\pi, 2 \pi)\end{cases}

where ϕ0\phi_{0} is constant. Give your answer in terms of (x,y)=(Rez,Imz)(x, y)=(\operatorname{Re} z, \operatorname{Im} z).