Paper 4, Section I, A

Electromagnetism
Part IB, 2019

Write down Maxwell's Equations for electric and magnetic fields E(x,t)\mathbf{E}(\mathbf{x}, t) and B(x,t)\mathbf{B}(\mathbf{x}, t) in the absence of charges and currents. Show that there are solutions of the form

E(x,t)=Re{E0ei(kxωt)},B(x,t)=Re{B0ei(kxωt)}\mathbf{E}(\mathbf{x}, t)=\operatorname{Re}\left\{\mathbf{E}_{0} e^{i(\mathbf{k} \cdot \mathbf{x}-\omega t)}\right\}, \quad \mathbf{B}(\mathbf{x}, t)=\operatorname{Re}\left\{\mathbf{B}_{0} e^{i(\mathbf{k} \cdot \mathbf{x}-\omega t)}\right\}

if E0\mathbf{E}_{0} and k\mathbf{k} satisfy a constraint and if B0\mathbf{B}_{0} and ω\omega are then chosen appropriately.

Find the solution with E0=E(1,i,0)\mathbf{E}_{0}=E(1, i, 0), where EE is real, and k=k(0,0,1)\mathbf{k}=k(0,0,1). Compute the Poynting vector and state its physical significance.