Paper 1, Section II, A
Let be the electric field and the scalar potential due to a static charge density , with all quantities vanishing as becomes large. The electrostatic energy of the configuration is given by
with the integrals taken over all space. Verify that these integral expressions agree.
Suppose that a total charge is distributed uniformly in the region and that otherwise. Use the integral form of Gauss's Law to determine at all points in space and, without further calculation, sketch graphs to indicate how and depend on position.
Consider the limit with fixed. Comment on the continuity of and . Verify directly from each of the integrals in that in this limit.
Now consider a small change in the total charge . Show that the first-order change in the energy is and interpret this result.