Paper 2, Section II, E

Geometry
Part IB, 2019

Define a smooth embedded surface in R3\mathbb{R}^{3}. Sketch the surface CC given by

(2x2+2y24)2+2z2=2\left(\sqrt{2 x^{2}+2 y^{2}}-4\right)^{2}+2 z^{2}=2

and find a smooth parametrisation for it. Use this to calculate the Gaussian curvature of CC at every point.

Hence or otherwise, determine which points of the embedded surface

(x2+2xz+z2+2y24)2+(zx)2=2\left(\sqrt{x^{2}+2 x z+z^{2}+2 y^{2}}-4\right)^{2}+(z-x)^{2}=2

have Gaussian curvature zero. [Hint: consider a transformation of R3\mathbb{R}^{3}.]

[You should carefully state any result that you use.]