Paper 4, Section I, F

Linear Algebra
Part IB, 2019

What is an eigenvalue of a matrix AA ? What is the eigenspace corresponding to an eigenvalue λ\lambda of AA ?

Consider the matrix

A=(aaabacadbabbbcbdcacbcccddadbdcdd)A=\left(\begin{array}{cccc} a a & a b & a c & a d \\ b a & b b & b c & b d \\ c a & c b & c c & c d \\ d a & d b & d c & d d \end{array}\right)

for (a,b,c,d)R4(a, b, c, d) \in \mathbb{R}^{4} a non-zero vector. Show that AA has rank 1 . Find the eigenvalues of AA and describe the corresponding eigenspaces. Is AA diagonalisable?